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Theory of metastable state relaxation in a gravitational field 
for non-critical binary systems with non-conserved 
order parameter 

Alexander F Izmailov and AUan S Myerson 
Department of Chemical Engineering, Polytechnic University, Six Metrotech Center, 333 
Jay Street, Brooklyn, New York 11201, USA 

Received 12 June 1992 

Abstract. A new mathematical ansatz is developed far solution of the time-dependent 
Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxa- 
tion in binary (solute+solvent) non-critical solutions with non-conserved scalar order 
parameter in presence of a gravitational field. It has been demonstrated analytically that 
in such system5 metastability initiates heterogeneous solute redistribution which results in 
the formation of a non-equilibrium singly-periodic spatial solute stmcture in the new 
solute-rich phase. The critical radius of nucleation and the induction time i6 these systems 
are gravity-dependent. It has also been proved that metastable state relaxation in vertical 
columns of supersaturated non-critical binary solutions leads to formation of the solute 
concentration gradient. Analytical expression for this Concentration gradient is found and 
analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal 
decomposition). 

1. Introduction , ,  

Experimental study of the metastable state relaxation in binary solutions is of great 
scientific and industrial interest. In these experiments the usual routine is to investigate 
different stages of the growth process of stable solute nuclei and phenomena associated 
with this growth [l-31. Metastable state relaxation is not only the growth of nuclei 
which is very rapid but also solution ordering. In this relaxation process very little is 
known about the metastable stage preceding nucleation (MSPN). MSPN manifests itself 
in solute fluctuations and redistributions which lead to formation of the critical solute 
nuclei. The MSPN lifetime is known as induction time't, [l-31. Recently, experimental 
studies of MSPN in vertical columns filled with supersaturated solutions have provided 
interesting data on solute sedimentation [4-81. In these experiments, initially undersat- 
urated solutions (usually aqueous solutions) have been subjected to a temperature 
quench process which transfers the system to a metastable state. Having carried out 
this transfer it is possible to observe a solute sedimentation process which manifests 
itself in formation of the solute concentration gradients along .vertical columns filled 
with the supersaturated solutions. It has been observed that the  solute^ concentration 
gradient appears in vertical columns only at the temperatures corresponding to saturated 
and supersaturated solutions. These experiments dealing with formation of the solute 
concentration gradient in MSPN are of great interest since they help to provide informa- 
tion about the nature of MSPN by examining solute sedimentafion, 
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2710 A F Izmailov and A S Myerson 

In this introductory section let us describe qualitatively physics of the solute 
sedimentation phenomenon which takes place in vertical columns filled with supersatur- 
ated binary solutions. Metastable state relaxation is characterized by an induction time 
r,. This time depends on the depth of penetration into metastable region and on the 
solution purity: in the case of little dust and dirt, induction time can be significantly 
increased. In this situation it is possible to investigate different kinetic phenomena in 
the M S P N .  The only restriction ofsuch investigations is associated with the characteristic 
times of the process under consideration. For example, in our case of the solute 
sedimentation process its characteristic time (sedimentation time) t ,  has to be: 
(a) less than or equal to the induction time (tsS i.). 
(b) sufficiently long for a noticeable solute concentration gradient to appear. 
At present two attempts to explain this phenomenon have been made [9,10]. The first 
one [9] proves that no reasonable value for t, can be obtained within the formalism 
of classical non-equilibrium thermodynamics. It has been concluded in this paper that 
the gravitational and buoyancy forces cannot alone be responsible for the solute 
sedimentation process. In paper [IO] we have concluded that this process can be 
understood as the redistribution of the solute subcritical nuclei in the presence of a 
gravitational field. MSPN is characterized by the situation when new-born solute aggre- 
gates (nuclei) are subcritical, i.e. it is energetically favourable for these aggregates to 
dissolve rather than to grow. In its turn, as it has been demonstrated in [IO], the 
probability for these solute subcritical nuclei to appear depends on the density of their 
potential energy hg in a gravitational field, where h is the height of the location of 
the solute aggregate under consideration and g is the free-fall acceleration. Thus, it 
has been derived in [IO] that due to the non-linear character of interaction between a 
gravitational field and the field variable describing solute concentration, the probability 
of birth of the subcritical solute nucleus on column bottom is greater than the same 
probability at the top. The only restriction imposed on the theoretical approach 
presented in [lo] is that the supersaturated solution has a metastable state which is 
close to the coexistence (binodal) line. In the present paper this restriction will be 
eliminated. 

2. Statement of the problem 

In this paper we will consider an inhomogeneous irreversible process describing the 
relaxation from a non-equilibrium metastable state to an equilibrium stable state in 
the presence of a gravitational field. Equations describing such relaxation processes 
in time are known in the literature [I l ,  121 as the time-dependent Ginzburg-Landau 
(TDCL) equations. They are formulated in terms of the local order parameter field 
p(r, r), where r is its spatial location and t is the current time. In our problem, the 
role of this order parameter field can be played by the averaged local solute concentra- 
tion in the new solute-rich phase. At a time just after a temperature quench (transfer 
into a metastable state) there is yet no new solute-rich phase. However, since the system 
under consideration is already in a metastable state there is a stochastic birth process 
of subcritical solute-rich nuclei. These nuclei born due to thermal fluctuations are 
supposed to dissolve in the course of the relaxation process until the moment when 
spontaneous nucleation takes place. At that moment the characteristic size of the 
nucleus (its surface radius, for example) becomes equal to or greater than the critical 
size r,. The time characterizing this moment is the induction time t .  mentioned 
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previously. At that time the probability of finding at least one critical solute-rich nucleus 
becomes.equal to unity. Thus, induction time characterizes the moment when critical 
and supercritical solute-rich nuclei begin to appear in a solution. These nuclei are 
supposed to grow in the courseof the relaxation since it is energetically more favourable. 
Thus, the order parameter q(r, t )  corresponding to solute concentration in the new 
solute-rich phase is subjected to small positive changes around zero due to subcritical 
nuclei until the moment of spontaneous nucleation when it begins to grow rapidly. 
This means that the order parameter is a non-conserved quantity with respect to 
metastable state relaxation: 

where V is the solution volume. In addition we have to note that for the case of the 
binary solutions order parameter, q(r, t )  is a scalar function. 

Simple theoretical consideration of the situation described above for the spherically 
symmetrical case deals with concept of the minimum work Emjn(rJ needed to form a 
solute nucleus of radius r,: 

EAjn(rS)=Es<+Ebr: (1)  

where the first term describes the energy increase associated with the positive energy 
change due to surface formation and the second term is associated with the change 
of bulk energy. It is assumed also that there exists the, distribution function W(rJ of ~ 

solute-rich nuclei with respect to their size r,. Generally speaking, this function depends 
not only on the thermodynamic state of a solution but also on the nuclei flux J. It is 
convenient together with distribution function W(r,)  to introduce the pseudoequili- 
brium distribution function Weq(rJ for the hypothetical case when there is a detailed 
thermodynamic equilibrium between nuclei dissolution and growth processes (in this 
case J=O).~There is the following expression'for function Wsq(r5) 111,121: 

,Weq(rs) =const..exp{-Emi.(r,)/kT) (2 )  
where T is the solution temperature. On the basis of'these results obtained within the 
classical non-equilibrium thermodynamics it has been concluded by Volmer, Weber 
[ 131 and Frenkel [ 141 thatthe metastable state lifaime t ,  is proportional to the following 
Boltzmann's factor: 

W(rJ = const. exp{-Emi,(r,)/kT}. 
1 

t,=- 
W(rJ 

(3) 

It is understandable that the above presented discussions are valid only for the 
homogeneous state. However, taking into account the influence of a gravitational field 
on the metastable state relaxation requires us to consider a heterogeneous case. This 
means that all characteristics of the metastable state relaxation process such as induction 
time t, and critical radius r, become dependent on the density of nuclei potential 
energy hg in a gravitational field. 

A metastable state relaxation equation in terms of the order parameter q(r, t )  was 
introduced by Ginzburg, Landau [15] and Cahn, Hillard [16]. This equation, known 
at present as the TDOL equation, has the following form: 
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where r> 0 is the so-called Landau-Khalatnikov damping coefficient which sets the 
time scale of relaxation process~[l5] and functional F[p(r, r)] is the Gibbs free energy 
density for the configuration characterized by the order parameter p(r, t ) .  The random 
function y(r ,  r) represents the Gaussian thermal noise which satisfies the fluctuation- 
dissipation theorem [17, IS]: 

A F Izmailov and A S Myerson 

(r(r, f ) ) = O  (Sa) 

where V, is the volume in the reciprocal space, i.e. in the space of Fourier images. 
Thus, by relations (4) and (Sa, Sb) we have determined the Langevin equation. In 
terms of this equation it is possible to distinguish the slow and fast changing degrees 
of freedom: the order parameter p(r, t )  is the slow-changing hydrodynamic degree of 
freedom whereas the random function y(r, t )  can be treated as the fast-changing degree 
of freedom which plays the role of a thermal bath. This means that the fast-changing 
degrees of freedom come to almost immediate equilibrium and are described by the 
Gibbs distribution for any given configuration of the slow-changing hydrodynamic 
degree of freedom p(r, t ) .  The latter, according to equation (4), relaxes toward the 
stable state via the formation of nuclei of the new solute-rich phase. 

Since the Gibbs time-dependent free energy functional F,(t) in equation (4) does 
not depend on relaxation dynamics we adopt, for its density, the standard Ginzburg- 
Landau expression [15]: 

(6) 

where the coefficient K gives the range over which spatial inhomogeneities persist and 
the functionalf[p(r, t ) ]  is the uniform potential density in the field of which the scalar 
order parameter p(r, t )  evolves. Let us consider the case of non-critical solutions, i.e. 
solutions which do not possess critical points or such solutions where critical points 
are hardly achievable. Partial thermodynamic equilibrium at metastable states of these 
solutions can be characterized at any time instant by the time-dependent Gibbs free 
energy functional F,(r). The simplest form for the potential density f[p(r, l)] of this 
functional in the case ofnon-critical solutions in a gravitational field can be presented 
as follows: 

K 
F[& t ) l=~[Vrp( r ,  t)l’+ftdr 01 

(7) f [a(r , t ) l=zp P z  ( r , t ) - ~ ~ 3 ( r , t ) - - p ( r , f )  7 hg 
TD 

where p and q are the positive coefficients characterizing depth of penetration into 
metastable state, D = TK is the ditrusion coefficient and hg is the density of potential 
energy in the gravitational field for the given order parameter p(r, t )  configuration 
(positive direction of the column height is from the column top to its bottom). Now 
one can rewrite equation (4) in the form of the nonlinear inhomogeneous partial 
differential equation: 

This equation can be treated as one of the possible modifications of the general TDCL 
equation [15]. The simple analysis of metastability indicates that it can be obtained 
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only for the order parameter q ( r ,  t )  values from the following ‘interval: 

It is noteworthy that gravity can induce spinodal decomposition when hg = r D p ’ / 4 7 .  
In this case, width of the metastable region is negligibly small and any temperature 
quench brings the system directly to the region of unstable states which immediately 
phase separate. For the order parameter q ( r ,  t )  values which are greater than (os we 
also obtain the solution unstable states. These states cannot exist in nature like the 
uniform states and phase separate through the spinodal decomposition mechanism. 
In addition, result (9) gives us the natural restriction imposed on parameters of the 
TDGL equation describing metastable state relaxation in a gravitational field: 

E(hg) e 1. (10) 
Thus, with the help of equation (8) one can describe metastable state relaxation 

in a gravitational field for the case of binary non-critical solutions. One of the main 
goals we are striving for in this paper is to determine how the metastable state lifetime 
t, depends on gravity: t ,  = t ,(hg) in the particular case when solution supersaturation 
is kept unchanged up to the moment of nucleation onset. Exactly this situation has 
been investigated in experimental studies [4-81. 

3. Solution of the metastable state relaxation problem 

In this paper we are developing a new ansatz for solution of nonlinear inhomogeneous 
partial differential equation (8). For this purpose let us rewrite equation (8) in the 
equivalent form of the following system of two differential equations: 

where r,= r,(hg) is the gravity-dependent critical radius of nucleation which is time- 
independent in the problem of constant supersaturation. The gravity-dependent 
auxiliary function A ( h g )  will be defined later. 

The mathematical ansatz for solution of system (11% l l b )  of differential equations 
can be given in the form of~the following scheme: 

( 1 )  We start solution of equation system (11% l l b )  from the solution of equation 
( 1  lb). Let us try to find the spherically symmetrical solution of this equation in the form: 

where a and A are the constants to be determined and r,(t)  is the time-dependent 
radius of the evolving embryo surface. Substitution of this expression for the spherically 
symmetrical order parameter q ( r ,  t )  into equation ( l l b )  allows one to rewrite it in the 
form: . .  
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As it has been shown by Painleve 1191 this ordinary nonlinear homogeneous differential 
equation of the second order can possess solution only under the following conditions: 
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These conditions allow us to express gravity-dependent critical radius of nucleation 
r,(hg) together with constants d and a through the gravity-dependent function A(hg) 
and parameters p and 1) of the potential energy densityf[p(r, t ) ] :  

Under conditions (14) equation (13) acquires the following form: 

Solution of this equation was given by Painleve 1191: 

,y[r(t)]=(dC,)2e-Zdr(r) PICIe-d'(L)+C 2 ,  ' 0 , -11. (17) 

In this expression P[ C, + C,; 0, -11 is the doubly-periodic Weierstrassian elliptic 
function ( DPWEF) with invariants g, = g, = 0 and g, = -1 (concerning DPWEF see Appen- 
dix and [20 ] ) .  Arbitrary constants C1 and C, of solution (17) have to be determined 
from the following initial and boundary conditions, respectively: 

x[r(t)Jlr=rs(t) = 0 ( I 8 a )  

The meaning of initial condition (18a)  is quite natural: there is no solute-rich phase 
just after the temperature quench process which brings the system into a metastable 
state. In its turn, boundary condition (18b) implies that solute concentration changes 
sharply on the boundary between solute-rich and solute-poor phases. Thus, conditions 
( I S a ,  b) help us to conclude that: 

where r,(O) is the characteristic size of solute unit (molecule or atom) and zo= 
0.761 647 9998 is the DPWEF P[z ;  0, -13 zero (for details see in Appendix (A.16, A.17)): 

P[ 2,; 0, -11 = 0. 

Now solution (17) can be rewritten as follows: 

,y[r(t)]=(dCl)2e-2d'"'P[C , e-dr('); 0, -11, (20) 
where constant C, is given by expression (19). Expression (20)  for solution of equation 
( l l b )  is our final result of the first step in our ansatz for the solution to equation (8). 
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The most interesting conclusion concerning this solution is that it describes appear- 
ance of the gravity-dependent damping spatial periodic structure in the new solute-rich 
phase during the process of metastable state relaxation. It means that this relaxation 
occurs in such a way that solute is redistributed periodically from the very beginning 
of this relaxation process. The time- and gravity-dependent period Ar(t) of such spatial 
heterogeneous structure for solute density can be found from the relation: 

where w2-0.952 1849997 is the only real half-period of the DPWEF with invariants 
g, =g2=0 and g,=-1 (for details see Appendix (A.1-A.9)). From this relation it is 
straightforward to obtain that: 

1 1 rt(t)-r:(O) 
d (;:,) h r;-'(hg) ' 

Ar(t)=r,(O)+-ln - +- 
In order to analyse the consequences which follow from this expression for the time- 
and gravity-dependent period of the solute spatial distnbution in the new solute rich 
phase it is natural to assume that initially, at the time instant t =0, solute is in the 
form of elementary solute units with characteristic size rJ0). Taking into account this 
assumption together with equation, (21) one can conclude that the spatial period of 
the initial solute density distribution in metastable state is gravity-independent: 

=$1n($)r0(O)=2.290726 83r,(O). (22) 

In this expression we have assumed that~r,(O)c< rJ0) and for values of w2 and z, see 
in Appendix relations (A.9) and (A.17), respectively. This means that initially, just 
after a quench of a solution into a metastable state, all solute elementary units (for 
example, molecules or atoms) are already redistributed in such a way that their spatial 
density is gravity-independent and changes periodically over the entire solution volume. 
This periodic structure of solute distribution 'is inherent to metastable states of non- 
critical solutions: it is initiated by transition into metastable state and is preserved 
during the following metastable state relaxation process. For the stationary case 
corresponding to formation of the critical solute nuclei the critical period Ar(i,) of 
their spatial distribution becomes gravity-dependent: 

Analysis of this expression will be given later on. 

(2) Now let us take into account agreement between two differential, equations (lla) 
and (1 lb). Thus, substituting spherically symmetrical expression for the order 
parameter q ( r ,  t )  found from equation ( l l b )  into equation ( l l a )  one can obtain the 
following evolution equation for the nucleus surface radius rs(t): 

where 
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In order to investigate evolution of the spherically symmetrical boundary of solute 
nucleus it is necessary to rewrite. equation (24) for r = rs( t ) :  
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where 

K[r,(t)l= - V r ( O I L r s ~ ~ ~ .  
Thus, we have obtained the Langeviu equation for evolution of the nucleus surface 
radius r , ( t j .  Random force p [ r s ( f ) ]  of this evolution process has the following corre- 
lators: 

( d r , ( t ) l )  = 0 (26a) 

( ~ [ r , ( f d l ~ [ r , ( t ~ ) I )  = D [ r s ( t t ) l ~ ( t l  - fz) (26b) 

where 

(27) 
r,(hg) '('--I) 

~ [ r ~ ( t ) i = r [ ~ ]  (a~[r,(t)1)-2 

and averaging is over all possible realizations of the random force p[r , ( t ) ] .  

state there exists the following equality: 
Let us now define auxiliary function A ( h g )  from the condition that at stationary 

From this condition one can obtain that: 

where 

K[r . (hg) ]  = lim K[r,( t )]  = -d(d,C,)'(2P[C,; 0, -1]+ ClP'"[C1; 0,  - I ] ) +  O ( E )  (30) 
r+t, 

dP[z; 0, -11 
P ( l ) [ C , ; O , - l ] =  >. 

UZ I i=c, 

Now taking into account that function K [ r , ( t ) ]  is the decreasing one with respect to 
r8( t )  it is possible to conclude that: 
(a) when r,(t) <rc(hg) ,  then the averaged nucleus surface radius (r , ( t ) )  is decreasing 
in the course of the metastable state relaxation d(rs(f))/dt<O; 
(b) when r$(t )=r,(hg) ,  then the averaged nucleus surface radius ( r , ( t ) )  is kept 
unchanged d(r,(t))/dt = 0 until eventually spontaneous nucleation takes place due to 
appropriate random thermal fluctuation; 
(c) when r , ( f ) >  r,(hg), then the averaged nucleus surface radius ( r , ( f ) )  is increasing 
in the course of the metastable state relaxation d(r,(t))/dt>O. 

The last conclusion conceming growth of the averaged nucleus surface radius r.(t) 
is due to the nucleation process only and has nothing in common with the coalescence 
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process which we do not consider in this paper. Thus, the first term on the right of 
equation (25)  determines the systematic force driving the growth (decay) of solute 
nucleus of the new solute-rich phase. This force tends to conserve the system uniformity 
and by itself cannot induce transition into a new phase. Such a transition can be 
induced only by the second term on the right of equation (E), i.e. by the random 
force p[r,( t ) ]  which describes thermal fluctuations. 

4. Fokker-Planck formalism and gravity-dependent induction time 

Let us now introduce a statistical description of the system which is governed by 
equations (25)-(27).  A metastable state produced when the equilibrium line of the 
first-order phase transition is crossed with finite velocity is the state of non-complete 
equilibrium. In such a state, distribution of the small-scale degrees of freedom ( r e  
ro(hg)),  such as thermal fluctuations, corresponds to the local equilibrium. The large- 
scale degrees of freedom ( r >  rc(hg)),  such as the scalar order parameter field p(r ,  t ) ,  
vary in the course of time GI correspondence with equation ( l l a ) .  The critical nucleus 
radius given by expressions ( 1 5 )  and (29) depends on the depth of penetration into 
the region of metastability of the initial phase and on gravity. It has been demonstrated 
in expression (29) that the last dependence is highly nonlinear. 

Metastable state relaxation will be described in this section as relaxation of the 
size-distribution function W[r,(  t ) ]  for solute nuclei of the new solute-rich phase: 

m 

W [ r , ( t ) l =  I . drs( t ’ )G[rs( t ) ,  r J 0 1  w [ r , ( t ’ ) l  ( 3 1 )  

where G[ ri( t ) ,  rs( t’)]  is the transition probability. Following the theory of homogeneous 
random processes [21] we introduce this probability in the form: 

rS0) 

G[r , ( t l ) ,  rS(t2)1 = @[rs(t1) - r s ( tJ l ) .  

It is well-known [21,22]  that when random force in Langevin equation is Gaussian 
distributed it is possible to construct the stochastically equivalent Fokker-Planck 
formalism. Within this formalism one is supposed to deal with the linear partial 
differential equation with respect to the size-distribution function W[r,(  t ) ] :  

where J [ r , ( t ) ]  is the density of flux in the size-space. For this density there is the 
following expression in terms of Langevin equation (25) characteristics: 

where 

Functions B[r , ( t ) ]  and D[rs( t ) ]  in expression ( 3 3 )  have to .be differentiable real 
functions with the only restriction that D[r , ( t ) ]>O.  The first term on the right of 
equation ( 3 3 )  describes systematicgrowth of solute nuclei of the new solute-rich phase 

0378”’03119 
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and is usually called the 'transport term' whereas the second one is responsible for 
diffusive growth of these nuclei and is called the 'diffusion term'. From the point of 
view of the Fokker-Planck formalism function D[ rs( t)] plays the role o f  the generalized 
time-dependent diffusion coefficient. It is important to note that this coefficient goes 
to zero like <('-"(t) ( A >  1) in the case when the surface radius r,(t) of solute nucleus 
tends to infinity. It can be also noted that for the particular case described here diffusion 
coefficient is related to the probability that a solute elementary unit (molecule or atom) 
joins the solute-rich nucleus of size rr( t )  per unit time. 

The first step in analysis of equation (33) is to find equilibrium distribution function 
Wcq[r,(t)] corresponding to zero flux density J[rs(t)] =O. This distribution describes 
the partial thermodynamic equilibrium when nucleus growth and decay processes 
compensate each other. Thus, it i s  straightforward to find the following expression for 
the equilibrium distribution function We,[ rs( t)]: 

A F Izmailov and A S Myerson 

This function gives the equilibrium distribution of solute-rich nuclei with respect to 
their size. 

In addition to equilibrium solution W.,[r,(t)] one can find the steady state solution 
W,[r,(t)] of equation (33) which corresponds to the constant stationary flux density 
J [ r s ( r ) ]  =constant: 

where 

The size-independent Eux density JSt corresponds to the constant flux density in the 
stationary nucleation regime. It means that magnitude of this density is the nucleation 
veIocity, i.e. the average change of the nucleus characteristic size per second. Thus, 
the reverse quantity J;' can be associated with the metastable state lifetime f,: 

t,= Jst.(lm)-' (37) 
where l m  is the unit length. 

The second step in analysis of equation (33) is to find analytical expression for 
function Weq[rs(f)]. In order to carry put this~step let us find the interval [KO, K.] 
within which derivative K[r,(t)] (for definition see expression (25) )  varies when its 
variable r,(t) changes in the interval [r,(O), r,(bg)] (for details concerning derivative 
of the DPWEF see in appendix expressions (A.12 and A.14)): 

The last equality for K ,  is valid only until r,(bg) >> r,(O) which is usually the case in 
nucleation problems. From these expressions for KO and K, one can conclude that 
derivative K [ rs( t ) ]  is almost everywhere wnstant (K[ rr( t)] = -(dzO)') when its variable 
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r,(t)  changes from r,(O) to r,. Taking into account this result it is possible to obtain 
from relations (15) and (29) the following expression for the gravity-dependent critical 
radius of nucleation r,(hg): 

. r,(hg) = rc(0)[l  +f(hg)l-'  (39) 

where 

3 
1020 

f ( h g )  =- f ( h g )  =0.678 714 749. ( ( h g )  < 1 .  

It is obvious from this result that the critical radius of nucleation slightly diminishes 
in the direction from the column top to its bottom. This decrease becomes more 
considerable for the metastable states close to spinodal line when f ( h g )  tends to unity 
(see expression (9)). 

Now let ns return to the equilibrium size-dependent function Weq[rs( t ) ] .  Taking 
into account results (38a ,386)  it is possible to obtain that there is the following 
expression for the equilibrium distribution of the subcritical ( r , ( t )  G r,(hg)) solute-rich 
nuclei with respect to their size: 

=ex,[ -7 (Y ( d ~ ; ) ~  ( 2 D a ( d z o ) ' [ h  RA--'(& hg) -A(hg)R"( t ,  h g ) ]  

where R(t, hg)=r , ( t ) / r , (hg)  and function A ( h g )  is given by expression (15). From 
this expression it foIIows that forthe equilibrium state under conditions r,(O) << 5r.(0)/2, 
rs( t)  < r,(hg) and A = 3, it is possible to restore phenomenological expression (1) for 
the minimum work Em,"(rs) needed to form subcritical or critical solute nucleus of the 
new solute-rich phase with characteristic size r,: 

Emjm(rs) = E,r:+ Ebr: (41) 
where 

2Dnz(dzo)6 - hga(dz$ 
Eb = E,(hg) = - 

3Tra(bg) 3TDr:(hg).  

It is noteworthy that within the developed above theoretical approach we have obtained 
the correct sign for coefficient Eb without special assumptions. Usually the Erst term 
of expression (38) is associated with the surface energy: E,=4vu, where U is the 
surface tension coefficient. Thus, within our approach one can express this coefficient 
through the TDGL mo'del parameters: 
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What concerns height h dependence of the surface tension coefficient a(hg) ,  it can 
be concluded, that for the fixed gravity acceleration g it grows in the direction from 
the column top to bottom. 

Analysis of result (40) gives that the function W;l[rs( t ) ]  has a sharp maximum at 
r,(t)  = r,(hg) which reflects the existence of a nucleation barrier. The expression for 
this maximum has the form: 
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w;,[r,(hg)] =eLJhg' (43) 
where 

1 
rc(0)' 

-- - - 2DaZ(dz$ - P3z: 
AT(A - 1) - 3 A ( A  - I)$ 

In order to obtain this result we have used expressions (29) for A(hg)  and (386) for 
K[rc(hg)] .  It is important to note that function L,(hg) = LA does not depend on gravity. 

The third step in analysis of equation (33) is to arrange adequate estimations for 
the induction time t,. In order to carry out these estimations let us calculate the integral 
in expression (36): 

where 

It can be done with the help of the steepest-descent method [23] which can give correct 
asymptotic for integral (44) only in the following case: (a) E = 17/3 >> 1; (b) functions 
D-'(r)  together with A ( r )  are the real and sufficiently smooth functions of r. The 
classical result for such integrals is due to Laplace who has argued that their main 
contribution comes from the neighbourhood of the global maximum of function A(r ) .  
This maximum takes place at r = r,(hg) and assuming now that A(r)  is twice differenti- 
able function it is possible to obtain that: 

where 

r 
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As it has already been demonstrated there is the following approximate equality: 

K [ r c ( h g ) l =  -(dzd3 r,(O) 5 r,(t) 5 r C ( W  
which is correct if, and only if, condition (38b) is satisfied. Thus, substituting 
expressions (46-48) into equation (45) one can obtain an expression for the gravity- 
dependent induction time t, in the form: 

&= t d k )  = t,(O)[l+f(hg)l-' (48) 
where 

In order to obtain expression for stationary flux density J,, in form (48) we have used 
expressions (15) and (39) for parameters a, B and function r,(hg), respectively. Relation 
(48) for induction time demonstrates that this time is gravity-dependent. For the case 
of the fixed gravity acceleration it is straightforward to conclude that induction time 
diminishes in the direction from the column top to bottom. Taking into account that 
maximum value of function f(hg) is equal to 3/10zi=0.678 714749.(C(hg)= I ) =  
0.678 714 749 (see expression (39)) it is possible to conclude from result (48) that the 
minimum achievable induction time in nucleation experiments in vertical columns is: 

tc,,,cn = 0.595 693 8191 . t.(O). 

The following decrease of induction time due to gravity is impossible since the following 
increase of column height at fixed gravity acceleration leads to phase separation on 
the bottom~level of vertical column through spinodal decomposition mechanism (see 
expression (9) for boundaries'of the metastability region). Taking into account relation 
(9) for pDS one can rewrite expression (48) for induction time t.(O) in the form: 

Now it is apparent that induction time t,(hg) depends not only on gravity but on the 
depth of penetration into metastable region. To explain that one can distinguish two 
limiting cases: 

(a) 'p. = 0. In this case for the fixed value of hg time t.( hg) = 0 what corresponds 
to the infinitely narrow metastable region (binodal line separates stable and unstable 
states), i.e. in this case temperature quench brings system almost on the boundary with 
unstable states which immediately phase separate. 

(b) 'p. >> 1. In this case for the fixed value of hg time t,(hg) may be very large 
corresponding to the very narrow unstable region, i.e. in this case the temperature 
quench always brings a system to a metastable state which can be thought to be very 
close to the binodal line (to the region of stable states). 

All these derived conclusions conceming the induction time t,(hg) are consistent 
with the known experimental facts [l-91. 

By result (41) we have also obtained restrictions under which the well-known 
assumptions (2-3) are correct. These assumptions state that there is the inverse propor- 
tionality between the induction time tJ0) and the equilibrium size-distribution function 
W.,[r,(O)] for critical solute nuclei. This .conclusion, t,(o) - w;d[rc(o) ] ,  was first 
obtained by Zeldovich [24] on the basis of classical non-equilibrium thermodynamics. 
In addition it has been proved that the equilibrium size-distribution function 
We,[ r,(hg)] is gravity-independent: W,,[r,( kg)] = Weq[rc(0)]. 

.. . ~. 
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5. Conclusions 

All results obtained in this paper are due to a new mathematical ansatz for solution 
of nonlinear partial differential equation (8). This equation describes relaxation in a 
gravitational field of the non-conserved scalar order parameter p(r, t )  which is associ- 
ated in our paper with solute concentration in the new solute-rich phase. The ansatz 
is constructed in such a way that equation (8) has been split into two interconnected 
equations ( l la)  and (l lb).  The doubly-periodic solution of second equation ( l l b )  is 
found and analysed. This solution corresponds to the new topology in solute redistribu- 
tion within the new solute-rich phase. According to our result (20) this redistribution 
corresponds to appearance of the damping spatial periodic structure for solute density 
distribution. The developing periodic structure exists during the metastable state 
relaxation process until coalescence processes begin to play an essential role. The new 
heterogeneous topological structure of the solute density distribution is inherent only 
to the solution metastable state: it appears immediately after solution transformation 
into metastable state. Since only one period of the found DPWEF is real (see in Appendix 
expression (A.9)) the solute heterogeneous structure described is in reality a singly- 
periodic structure. The main characteristic of such a spatial singly-periodic structure 
is its period. We have found that this period A r ( t )  is gravity- and time-dependent (for 
details see expression (23)). 

It is obvious from solution (20) that the metastable state relaxation is also 
heterogeneous with respect to the density of potential energy in the gravitational field. 
This fact proves the existence of the solute sedimentation process which takes place 
in the course of the metastable state relaxation process in a gravitational field up to 
the moment of spontaneous nucleation onset. Solute sedimentation manifests itself in 
formation of the solute concentration gradient along the column height. This gradient 
is directed downward and is associated with contribution to solute density due to 
solute subcritical nuclei. In order to estimate the solute concentration gradient 
A H p [ r s ( t ) ] =  ~ ~ { , y [ r , ( t ) ] [ ~ = ~  -,y[rs(t)]lh-o}, in the vertical column of height H let us 
assume that for any stage of evolution for the surface radius rs( t )  of solute nucleus 
there exists the following inequality: 
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where the surface radius rJ( t )  changes in the interval [ rs(0), ro(hg)]. Under this condition 
it is possible to expand solution (20) into series around zo (see expression (A.18) in 
Appendix) and to obtain A H p [ r S ( t ) ]  in the form: 

A ~ [ r ~ ( t ) ]  =a(dzo)s [r:(t) -r:(O)l[(l+f(Hg))”-’- 11. (51) 
Arc (0 )  

It is apparent from this expression that the solute concentration gradient is anincreasing 
function of time and gravity. Analysis of expression (51) for t =  t,(Hg) gives that the 
maximum gradient A ~ [ r , ( H g ) l  of solute concentration p[r,(  t ) ]  is the non-trivial 
function of the potential energy density Hg in a gravitational field. It is easy to 
demonstrate that for the case when A = 3 and rs(0)/rc(O)<< 1 this maximum achievable 
gradient of solute concentration has local maximum with respect to Hg = (Hg),=%= 
S z i ( 8 -  l)rDp2/6q 0.269545 9173 .TDp2 / i :  
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Further increase of the potential energy density Hg leads to the decrease of the 
achievable solute concentration gradient since gravity-dependent critical radius of 
nucleation r,(Hg) and induction time t,(hg) become sufficiently small for the nucleation 
process to start. Thus, the rapid nucleation prevents formation of the considerable 
solute concentration gradient along the column height. 

It is also important to note that when column height H is sufficiently large: 

it is possible to initiate immediate spontaneous nucleation by gravity. It means that 
gravity-dependent critical radius of nucleation re( Hg) corresponding to column bottom 
( h  = H )  becomes equal to the initial characteristic size r,(O) of solute units (molecules 
or atoms). In this case~nucleation on the bottom level of vertical columns starts 
immediately after solution transfer into a metastable state. 

Appendix: Doubly-periodic Weierstrassian elliptic functions 

Doubly-periodic Weierstrassian Elliptic Function (DPWEF) P ( z ;  g,, g J  is an even 
function of order two which is usually defined~by the following double series [15]: 

‘P(z;g, ,g,)=P(zlw, o’)=P(-zlw, U ’ )  ~. 

where 

Omn = m2w+n2wr. 

There is also the integral formula for the DPWEF P ( z ;  g,, g3): 
ea .=I d y ( 4 ~ ~ - g ~ ~ - g ~ ) - ” ~ .  64.2) 

In expression (A.l) w and w ‘  are the DPWEF primitive half-periods; m and n are the 
integers. Summation in expression (A.1) ranges over all integers m and n except m = 0 
and n = 0 simultaneously. Double periodicity means that there are the following 
expressions: 

P(z+Zwlw, w‘ )=P(z lo ,  0‘) , (A.3) 

P(z+tw’jw, w’)=P(z j ,~ ,w’ ) .  (A.4) 

P(~:P, ,z , )  

The function P‘(zlw, w ’ )  =dP(zjw, w’)/dz is the odd elliptic function of order three 
with half-periods w, (a = 1,2,3): 

w,=w w 2 -  --0 - w J  . 0, = 0 1 .  (A.5) 

It can be concluded that P‘(w,lw, 0’) = P(-w,lo, U ’ )  = O  since P‘(zlw, w ’ )  has half- 
periods w, and P‘(-w,lw, w ’ )  = -P’(o,/w, w ) .  Thus, it follows that z = w, (a = 1,2,3) 
is an irreducible set of zeros for P‘(zlw, w’) .  It is customary to put that: 

e, = P(w,lw, w ’ )  ~ (a = 1,2,3).  (A.6) 
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The DPWEF invariants g,, g, and g3 can be defined in terms of constants e, (a = 1,2,3) 
in the following way: 
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g, = e,  + e,+ e, = 0, 

g, = z(e:+ e:+ e:) 
g, = 4e,e2e3. 

A = 16(e,-e,)2(e,-e3)z(e,- e3)’=g:-27g:. 

(A.7) 

Discriminant A of these relations between e, and g, (CY = 1,2,3) is given in the form: 

In our particular case corresponding to g, = g, = 0 and g, = -1 one can obtain that: 

(A.8) 
Now taking into account relations (A.2) and (A.6) it is possible to write the following 
expression for the real half-period w,: 

e -4-113 - h 1 3  e .  e -4-113 rm13 e - -4-113 
1- e 2 -  3 -  

(A.% 

where VP is the Cauchy principal value. For non-zero invariants g, and g3 there exist 
the other representations: 

(A.10) 

From the definitions presented above one can derive the homogeneity relations for 

511. 
m 

w2= VP je, dy(4y2+l)-”’=-;= 331/225,3 0.952 184 9997 

g3 = 140 C C (1 - &,0)(1 -&,o)aLt. 
m n  

‘g, =60 C C (1 - &t,o)(l- & , o W i :  
m n  

arbitrary s # 0: 

P(szjsw, sw’) = s-2P(zlo, w‘)  

P ( s z ;  s-dg,, s-68,) = S-,P(z; g,, g3) 

and 

(A.ll) 

(A.12) 

Taking into account relation (A.ll) and putting s = i  one can obtain for the case of 
negative g3 the following result: 

(A.13) 

Thus, it is always possible to convert the case corresponding to negative g, into the 
case corresponding to positive g3. 

P ( z ;  gz, g3)  = -P(iz;  gz, 3 , ) .  

Zero zo of the DPWEF is defined through the relation: 

P(z0;  gz, g,) = P(zolw, w‘ )  =o. (A.14) 

At this point there also exists the following useful relation: 

P’h; g,, g3) = iG. (A.15) 

Now taking into account integral, formula (A.2) for the DPWEF P(z;g,,g,) we 
apparently find zo in the form which corresponds to g, = 0 and g3 = -1. We obtain that: 

zo= ~omdy(4y3-g2y-g3)-’1Z. (A.16) 

~ ~ 1 3 ~  
Z, = lom dy(4y3+ = ;= 0.761 747 9998. (A.17) 
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Now it is straightforward to obtain the following expansion of the DPWEF P [ z ;  g,, g3] 
around zo : 

P [ z ;  g,, g3l= P"'[zo; g2, g31U[1-3C,u4+. ' .]-,[5C2+14C3u2+. . ~ . ]  (A.18) 

where C, = g2/20 = 0 and C3/28 = -1/28. 
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